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Abstract. ' l l ~ ~ h e  adiabatic quantum evolution of a two-state system without energy-level 
crossings is an example of the Stokes phenomenon. In the latter, a small (subdominant) 
c"pu"c"L1a1 I" am aaympluus expanslo" appears wnrn a JLOI rs  ,,ne IS cr"sss"; IrY"sallllg 

the dominant asymptotic series at its least term causes the multiplier of the subdominant 
term to rise in a smooth, compact and universal manner across the Stokes line. In quantum 
evolution this corresponds to  a smooth transition, universal in form, between 'super- 
adiabatic' basis states (high-order WKB approximate solutions of  the time-dependent 
SchrBdinger equation). We give a numerical demonstration of this previously predicted 
universality by constructing, for two Hamiltonians, the superadiabatic quantum bases 
asymptotic to the actual evolving state. Universality when a Stakes line is crossed is seen 
in the changing probability that the system makes a transition away from the superadiabatic 
state, and occurs at that order of superadiabatic approximation corresponding to truncating 
the asymptotic series at its least term. 

.- :. - ~ ~ - ~ - - ~ ~ ~ ~ L ~ ~  ~ ^ _ ~ . ~ ~ ~ . ! ~ ~ ~  .~ .~~~ .... :.- 

1. Introduction 

Our purpose is to give numerical illustrations of a recent theory (Berry 1990b, hereinafter 
called I )  for the time developfnent (history) of quantum transitions induced by a 
slowly-changing Hamiltonian H (  T). That theory was stimulated by recent progress in 
understanding the Stokes phenomenon of asymptotics (Berry 1989, 1990a). In I, the 
central prediction was that if the evolving quantum state is tracked in a particular 
'optimal superadiabatic' basis, the rise in the amplitude for transition to an initially 
unoccupied state, from zero to the final exponentially small value, has a universal form 
given by an error function. 

The optimal superadiabatic basis is one of a sequence of superadiabatic bases, 
whose lowest member is the ordinary adiabatic basis, consisting of the instantaneous 
eigenstates of H. Higher members of the sequence are successive truncations of the 
(divergent) asymptotic series solution of the time-dependent Schrodinger equation in 
powers of the adiabatic parameter E. As is well known (e.g. Landau and Lifshitz 1977). 
none of these truncations describes transitions from the initial state, because such 
transitions are exponentially weak, that is 'beyond all orders' in E. Any of them can, 
however, be employed as a basis to describe the exact evolution. The optimal basis 
corresponds to truncation of the asymptotic series at its least term (whose order is 
proportional to E - ' ) ,  In section 2 we summarize the construction of this family of 
bases; details can be found in 1. 

Universality emerges when high-order bases are employed, and is a consequence 
of the existence of degeneracies in the complex-time plane. As summarized in section 
3, at the optimal order universality takes the form of the transition amplitude reaching 
its exponentially small final value by adhering closely to the error function of a natural 
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variable; again, details can be found in I. At the optimal order there are oscillatory 
deviations from the error function which, however, vanish in the adiabatic limit; these 
too are universal in form. Beyond the optimal order, the transition histories rapidly 
acquire wild oscillations, and the error function no longer applies. 

This 'transitory renormalization' as we move along the sequence of superadiabatic 
bases, onto the universal error-function history, is an unfamiliar and interesting 
phenomenon, worth illustrating. For this we employ two model Hamiltonians. As 
described in section 4, these are the Landau-Zener model (Zener 1932), and a variant 
of this. For each, the superadiabatic bases are constructed, and the transition histories 
calculated exactly and compared with the predictions of the asymptotic theory of I. 

R Lim and M V Berry 

2. Superadiabatic bases 

We wish to solve the Schrodinger equation 

involving the 'slow time' T and the (small) adiabatic parameter E (which incorporates 
Planck's constant h). For H we can take a real symmetric 2 x 2 matrix: 

It is helpful to regard the time development of fi as a path in the plane with Cartesian 
coordinates X, Z and polar cpordinates H, 0. The path is analytic, and may not pass 
through the origin-that is, H is not degenerate for any real time. The energy levels 
are + H ( T )  and the adiabatic (instantaneous) eigenstates are, in an obvious notation, 

Initially, the system is in the + state, that is I + ( T +  -m)). We seek the history of 
the amplitude for transitions away from this state;-or rather, from states that cling 
superadiabatically to this state as it changes with H ( T ) .  Thus we write 

I$(T))= c "+ (~ ) l$ "+ (~ ) )+c " - (~ ) l$ " - (~ ) )  (4) 

where I$&)) are the superadiabatic basis states at the nth order, whose construction 
will soon be described. The zero-order states are proportional to the ordinary adiabatic 
states I+)) defined in (3). The desired transition amplitude is thus 

C.-(.) = (*n-(T)l*(T)) ( 5 )  

with the initial conditions in (3) being C ~ _ ( - - O O )  = 0, c.+(--oo) = 1. The transition proba- 
bility is I C * - ( T ) ~ ' .  

Clearly the determination of c._ requires the superadiabatic states with lower energy 
- H ( T ) ,  namely I$"-); these are approximations to the state orthonormal to the evolving 
state. The nth such superadiabatic state is the formal series solution of the Schrodinger 
equation in powers of E, truncated at the term in E " ,  namely 
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For a given Hamiltonian path, specified by the functions H (  T )  and !3(r), the coefficient 
functions a,(.) and &,,(T) are determined by recursion, as follows: 

These conditions ensure that the superadiabatic states correspond to the lower, rather 
than the upper, energy eigenstate, and also that the states are orthogonal to order E " + ' .  

(Note that similar formulae in I refer to the upper superadiabatic states I+"+).) 

3. Universal transition histories 

Given any Hamiltonian path and an exact solution of the corresponding Schrodinger 
equation ( I ) ,  the prescription for calculating the transition amplitude c _ ( r )  is projec- 
tion, according to ( 5 ) ,  onto the superadiabatic state defined by equations (6) and (7). 
In the analytic theory (I)  of the universal transition amplitude, two further ingredients 
enter. 

The first is the large-order behaviour of the coefficient functions u,(T). Because 
of the form ofthe recursion (7), this is determined by the singularities of the lowest-order 
function a,(r)  which are closest to the real T axis: the successive differentiations 
magnify the singularities, whose domain of influence swells so as eventually (that is, 
for large m )  to reach the real T axis. The singularities are the complex degeneracies, 
that is complex zeros of H ( T ) ;  they occur in conjugate pairs. From the form of a,(r)  
in (7) an obvious natural variable is 

This variable has a further significance: it is the difference between the phase of the 
exponent in (6) and the corresponding phase in the upper superadiabatic states, that 
is the disparity between the phases in the two contributions to the superposition (4). 
The fact that the superposition involves two competing exponentials makes it unsurpris- 
ing that the Stokes phenomenon will appear. 

Let the nearest singularity in the lower half-plane be w,. Then close to w, the 
appropriate limiting form can be calculated to be 

i 1 '1 - i.e. a , ( ~ ) = -  
1 dO(r) 

2 f f ( r )  d r  3(W-W,) 6 ( w -  wC)' 

By recursion this generates large-order coefficients which, when combined with their 
counterparts for the conjugate singularity w r ,  lead to 
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Each term shows the 'factorial divided by power' divergence typical of an asymptotic 
expansion (Dingle 1973). 

The second ingredient is the use of perturbation theory to calculate the transition 
amplitude. As explained in I (see also Berry 1990a), this would not be justified for 
low-order bases but is valid for large n. Perturbation theory, applied to the Schrodinger 
equation in the nth superadiabatic basis, gives 

R Lim and M V Berry 

dw ~ , + , ( T ( w ) )  exp(-iw/e). ( i i )  I \ . I  \ "  r ~ 1 ' )  
C . _ ( T )  "-I ( -&)  J -m 

Combining these two ingredients, we obtain 

It is convenient, and involves no loss of generality, to make w, purely imaginary 
(= -il w,l). This simply amounts to an appropriate shift in the origin T = 0, to make 
this correspond to the instant when a Stokes line issuing from w, crosses the real T 

axis. (Stokes lines are defined by Re( w - w,) = 0.) Then the expansion of the fractions 
in (12) to second order in I w/ w,I leads to 

x [ exp[-'"( 1-T)] E (n+ l )  +(-1)" exp($( 1.-)]I. (13) 

E WCl 

The first exponential in the square brackets oscillates more slowly than the second, 
and as a first approximation we may disregard the latter. The prefactor is smallest for 
n - Iwcl/e, and this same choice almost removes the oscillations in the integrand, 
leaving a Gaussian integrand. Thus, after using Stirling's formula, we obtain the error 
function * 

c"-( T )  - f[ 1 + e r f{u (~) ) ]  exp(-/w,l/ E )  for n = I  w.I/e 

where 

U( T )  f W( T ) / m .  (14) 

This has the now-familiar form for the switching on of a subdominant exponential 
across a Stokes line (Berry 1989, 1990a). The argument U of the error function is the 
Stokes variable (Berry 1989), namely the imaginary part of the 'singulant' (difference 
between the two exponents) divided by the square root of twice the singulant. The 
formula (14) also gives the correct exponential small final transition probability. 

4. Two model Hamiltonians 

We now obtain the transition histories for two models for which it is possible to solve 
(4) and (5) and hence obtain the functions a, and 6,. The first is the well known 
Landau-Zener Hamiltonian (Zener 1932) 

z ( T ) = T  x ( T ) =  1. (15) 



Superadiabatic tracking of quantum evolution 3259 

The polar angle e (7 )  decreases from v to 0, 

1 dO(7) __-- --sin' 8 ( T )  
H ( T )  d r  

and 

W ( T ) = T J i S + l n ( J 1 + + T ) = c o t  ecosece+in(cot e+coseco).  (17) 

The degeneracies occur at T = i i ,  giving w, = -iv/2. 
Our second model, which we call the ranh Hamiltonian, is similar to Landau-Zener 

hut its energy spacing remains finite as T +  +CO: 

Z ( T )  = tanh T X(T)=1. (18) 

The polar angle e (7 )  now decreases from 3 . ~ 1 4  to a /4 ,  

1 dO(T) 
- s i n B ( r ) c o s 2 B ( ~ )  

H ( T )  d 7  

and 

W ( T )  =2f is inh- ' ( f i s inh  ~)-2sinh- ' ( tanh T )  

= 2 J z  ~ o g ( i  +a COS e) -fi b g - c o s  20) + 2  iog(cot 8+cosec e). (20) 

Now there is a string of degeneracies, at T = +i(2n + l ) v / 4 ;  the nearest to the real axis 
has w c = - i v ( f i - l ) .  

For both Hamiltonians, we constructed the superadiabatic bases by calculating the 
functions a,,, and Pm from (7), using for convenience the variable 8 rather than T. This 
is a tedious affair, with the coefficients in the results soon swelling to unwieldy 
proportions, as manual calculation of the first few will confirm. Fortunately the advent 
of powerful symbolic computational packages obviates the need for such effort. We 
used the package Mathematica to generate these functions (and also for the rest of 
the numerical work in this paper). 

To find the transition amplitudes c ._ (T)  from the projection ( 5 ) ,  it is also necessary 
to solve the Schrodinger equation. For the Landau-Zener model the exact solution of 
(1) starting out in the spin-down state (which as T+-CO is the higher-energy state) 
can be expressed in terms of parabolic cylinder functions (Gradshteyn and Ryzhik 
1980): 

where U- i / 2 ~  and c( T )  = T- exp(3vi/4). For the tanh model, we solved the matrix 
equation (1) numerically, by Runge-Kutta integration. 

Because we seek to display the predicted universality, we choose the values of 
1 wJ/ E to be the same for both models, namely 5.205. Thus the final transition amplitude 
is 

The expected optimal order of superadiabaticity, giving the error-function amplitude 
(14), is n = 5 .  The corresponding adiabatic parameters are E = 0.3018 for the Landau- 
Zener model and E = 0.25 for the tanh model. 
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U -6 Aa 
i o  

Figure I .  (aj-(kj, Sequence of histories of transition amplitudes lcn.(T(vj)l in ( a )  the 
ordinary adiabatic basis n = 0 and ( b ) - ( k )  the superadiabatic baser n = 1-10. for the 
Landau-Zener Hamiltonian with E =0.3018 (thick line) and the tanh Hamiltonian with 
E =0.25 (dots). The thin line is the optimal superadiabatic error funclion (141, which as 
expected best fits the data for n = 5 (figure l(f 11. 
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Figure 1. (continued) 

The sequence of transition amplitude histories for the two models is shown in figure 
1, for the superadiabatic bases n = 0 through n = 10. Instead of 7, we employ the natural 
variable v defined in (14), that is we plot I C ~ - ( T ( C ) ) ~ .  In the first few bases the two 
models give markedly different histories: the oscillations differ in amplitude (although 
they are similar in phase). The gradual attainment of universality as n approaches 5 
is obvious. Not only do the two sets of histories become almost identical, but the 
amplitude fluctuations get smaller and smoother. For n =4, 5 and 6 the theoretical 
error function is a good fit to the calculated histories. As n is further increased beyond 
optimality, the fluctuations reappear and grow rapidly, reflecting the divergence of the 
asymptotic series employed to generate the bases. 

Although the fit with the theoretical formula (14) is good near n = 5 ,  it is not 
perfect: the smooth error function is contaminated by small superimposed oscillations. 
These arise from the discarded second exponential in (13), for which the oscillations 
in the integrand do not cancel. The corresponding small oscillatory correction to (14), 
easily estimated by integration by parts, is 

exp w+2il w,l)-'. (23) 

As figure 2 shows (for the tanh model), the agreement between this 'improved error 
function', and the transition histories close to the optimal one, is strikingly good. 

One feature of the optimal history ( n  - I W ~ ~ / E ) ,  emphasized in I, is that it is much 
more compact than the ordinary adiabatic history ( n  = 0): in the former, the duration 
of the transition is a time r,,., of order &, whereas for the latter T~~~~~ is of order 
unity (essentially the time over which A(r) changes), which is considerably longer. 
In a fixed basis (unrelated to the adiabatic eigenstates), T , , ~ " ~  can be much greater still, 
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1II 

Figure 2. ( a ) - ( c ) .  Comparison of  the near-optimal transition historier [cm.(r(r)) l  far 
n = 4.5.6, calculated Tor !he tanh Hamiltonian (dots) with the theory based on the error 
function (14) with the correction (23) (thin line). 

as we now illustrate for the Landau-Zener model. There, a natural representation is 
the original spin-up, spin-down (‘diabatic’) basis of equation ( l ) ,  because the adiabatic 
state starting in the down state ends in the up state (and vice versa). Figure 3 shows 
the history of the spin-down Landau-Zener amplitude for the previous value 
E = 0.3018. The amplitude decays from unity to the final transition amplitude 0.0055. 
Evidently this decay is accompanied by a long tail of oscillations. Asymptotics of (21), 
described in appendix A, shows that this tail is exponentially long: T , ~ ~ ~ ~  is of order 
exp(l w.l/ E ). 

5. concluding remarks 

The results we have presented not only confirm the predictions of 1 but provide 
convincing illustrations of recent insights into asymptotics. We have followed the birth, 
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Figure 3. History of the spin-down amplitude l$amwml in the diabatic representation, for 
the Landau-Zener Hamiltonian, ( a )  for shon times; ( b )  paa ofthe long-time tail (appendix 
A) near the time ~ , , , ~ ~ . = 8 5 1 7  when the envelope of the oscillations touches zero; ( c )  for 
times where U >> u,ramr. The fhin line is the [exponentially smaili tinai amplitude. Note the 
difference in U scales from figures 1 and 2. 

across a Stokes line, of the subdominant exponential, for the particular example of a 
quantum transition, by constructing asymptotic series for the components of an evolving 

progressive attainment of the smooth and universal error function rise corresponding 
to least-term truncation. Such scrutiny of the Stokes multiplier at each level of 
asymptotic approximation would barely have been feasible were it not for today's 
computational software packages, whose increasing prevalence ought to make 
asymptotics much less of an esoteric pursuit. 

One problem that remains to be tackled is that of a Hamiltonian whose complex 
energy degeneracies are equidistant from the real axis of the w plane. The contribution 
of these competing singularities to the final transition amplitude is approximately the 
interfering sum of complex contributions but when the error functions (Stokes smooth- 
ings) overlap, the effect on the transition histories is not entirely clear. 

- . . m n + . . n .  + m + n  RT. ;nrm-ri-n +ha n.imh-r n F  t n r m e  1xcn.4 ..,a I X I P ~ ~  Q h l m  +A .&+-a-- eh- 
qYO.'LY." S L L I I I .  ", ,LL'.CLI1""L6 ,..* L . " . I . " I I  ". L* . . l l l  "Ob", nu " *&*  -",- ," n . L L l r " D  ,,,= 
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Appendix A. Landau-Zener asymptotics 

From equation (21) we see that the explanation of the oscillations in figure 3 depends 
on the behaviour of 
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for large positive T. In this argument range the parabolic cylinder function asymptotics 
is based on two exponentials (see e.g. Gradshteyn and Ryzhik 1980, equation 9.246.2), 
whose mutual interference produces the oscillations. One exponential is larger than 
the other, by a factor proportional to T,  so that the oscillations gradually die away, 
leaving the ultimate amplitude IJrdOw.l + exp(-?r/(Z&)). 

To describe these phenomena in lowest order we require the leading term of both 
exponentials, and a little calculation leads to 

where 

Figure 3(b)  illustrates the behaviour of this function. The oscillations lie between two 
envelopes. The instant when the lower envelope touches zero can be regarded as 
defining the duration of the transition, i.e. 

(A3) T , ~ ~ ~ ~  = &'exp( a/ E )  - I = t exp( P /  2 E ) .  

(At this instant, the period of the oscillations is approximately 2aa exp(-a/Zs).) 
In this diabatic basis the transition time is very long. For the value E =0.3018 that 

we have been using for illustration, rtrSns = 91.07 and the corresponding Stokes variable 
is ~ , ~ ~ ~ ~ = 8 5 1 7 .  By contrast, the value in the ordinary adiabatic basis is u,~-...= 
w ( 1 ) / 6 = 3 ,  and the optimal superadiabatic value is U,?*"* = 1. 

At large negative times, lJldnwnl approaches its starting value of unity. In this range 
of argument the parabolic cylinder function has only one exponential contribution 
(see e.g. Gradshteyn and Ryzhik 1980, equation 9.246.1), so there are no interference 
oscillations. (Such oscillations appear in a calculation by Berry 1984 but should be 
disregarded because they are a computational artefact.) 
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